
Battleships
On The Blockchain

Powered by Nebulas
June 5rd, 2018

by Hardly Difficult

With Contributions From

Metjm
Core Concepts

ThePinkFreudian
Words

Twitch Chat
\o/

The Game:​ ​https://hardlydifficult.github.io/battleships
The Code: ​https://github.com/hardlydifficult/battleships

Nebulas Referral Link:​ ​https://incentive.nebulas.io/signup.html?invite=2nOH7

https://hardlydifficult.github.io/battleships/
https://github.com/hardlydifficult/battleships
https://incentive.nebulas.io/signup.html?invite=2nOH7

Battleships On The Blockchain
by Hardly Difficult

Executive Summary 3

Introduction 4
The Problems 4

Potential for Cheating 4
Server Downtime 4
Hosting Costs 4
Loss of User Data 4
Monetization Opportunities 5

The Solution 5

Technical Design 6
Sequence of Events 6

Alternative Methods: 7
Secret Management 7

Secret Management Requirements: 7
Secret Management Process: 8

Front End 8
Shipcoins 9
Threat Model 9
Issues & Possible Improvements 12

Gameplay Speed 12
User Expense 12
Tedious 13
Gameplay Experience 13
Other Technical Considerations 13

Other Possible Applications 15
Example: Rock Paper Scissors 15
Example: Hearthstone ® 15

Conclusion 17

Appendices 18
Disclaimer 18
Definitions 18

2/19

Battleships On The Blockchain
by Hardly Difficult

Executive Summary

Games on the blockchain offer many benefits over the traditional model to both developers and
players by leveraging the network as a decentralized game server with zero downtime, no
maintenance costs, an immutable and public history of games played, and a gaming experience
that can never be taken from the player should the studio drop the game or go under.

However, blockchains store all of their information publicly and transparently. This presents a
challenge when implementing games like Battleships - we don’t want to allow your opponent to
see your board, but we also need to ensure nobody cheats by moving a ship after the game has
started.

This paper and the accompanying open-source game demonstrate how hash codes can be used
to solve this problem. We create a decentralized multiplayer game server where everything is
public and verifiable without allowing your opponent to spy on your board. And cheaters never
win.

3/19

Battleships On The Blockchain
by Hardly Difficult

Introduction
Our implementation of Battleships addresses a number of known issues with traditional
models.

The Problems

Potential for Cheating
When I was a kid, I played my fair share of games of Battleships. And I cheated, especially when
playing against my brother. It was simple: if he hit, I would move the ship out of the way under
the guise of placing a white peg down.

Unfortunately, players cheat, and ​research suggests​ they may be more likely to cheat in an
online setting where consequences are scarce. And the problem gets much worse when there
are items with real monetary value on the line, as seen with the recent ​CSGO Skins drama​ where
odds were allegedly being manipulated to help with marketing.

People have a strong desire to win. If they can get paid as well, then some will dedicate serious
time to finding a way to maximize their chances.

Server Downtime
Server downtime, whether scheduled or unanticipated, disrupts the player experience. ​Even in
the case of scheduled downtime, players can be quickly frustrated​, leaving negative
impressions of the game experience and diminishing loyalty over time.

Additionally, many small game studios fail, and when they do they shut down their servers.

Hosting Costs
Battleships is an online, multiplayer game. In a traditional model, we would need dedicated
servers to handle game logic, databases, and player accounts. Then these costs are scaled to
the size of the player base, which could change drastically and suddenly over time. Even for
smaller games, these costs can quickly add up. See the Amazon Web Services ​latest pricing
tiers​ for cloud gaming servers as an example.

4/19

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.472.3994&rep=rep1&type=pdf
https://dotesports.com/counter-strike/news/csgo-gambling-sites-19834
https://twitter.com/PUBG_help/status/999092595555844096
https://twitter.com/PUBG_help/status/999092595555844096
https://aws.amazon.com/gamelift/pricing/
https://aws.amazon.com/gamelift/pricing/

Battleships On The Blockchain
by Hardly Difficult

Loss of User Data
Halo 2, Rainbow Six 3, The Sims Online - we’ve seen over and over what happens when a
centralized studio or server stops hosting a game. Loyal players lose their stats, assets, and
considerable playtime logged.

Monetization Opportunities
Pay-to-win, skins, and hats are about as good as it gets these days. The blockchain provides
several more attractive options for monetization. For example, in Battleships, you play to win
Shipcoins!

The Solution
Blockchain.​ ​For the first time, we can actually create provably fair games. And by hosting the
game on a blockchain, we are guaranteeing that players can continue playing as long as
someone else is interested in joining in.

We are leveraging the blockchain as a decentralized multiplayer game server. Players
communicate through the blockchain, avoiding the issues discussed above.

In order to ensure that players are not able to cheat like I used to, they need to share the layout
of their board before the game begins. We use hash codes so this is possible without allowing
the other player to learn anything about our board.

We also demonstrate monetization potential through the use of a limited-edition “Shipcoin”
NEP5 token.

Battleships is a simple example, but the concepts here could be applied to other, more
interesting games as well.

5/19

Battleships On The Blockchain
by Hardly Difficult

Technical Design
The dapp is comprised of a front-end interface and a smart contract. Both are written using
Javascript. As with any secure application, the front-end cannot be trusted. All gameplay
decisions need to be confirmed and enforced by the smart contract.

When the game begins, users lay out their board and then publish hash codes for each tile as
explained in the secret management process below. Throughout the game, users may reveal the
contents of a tile (e.g. “hit” or “miss”). When they do, they provide enough information for the
blockchain to confirm that the contents have not changed since the game began.

The front-end simply polls the blockchain for updates and then visualizes that for the player.
When players make a move, the front-end creates a transaction for it and then monitors the
blockchain to see when/if the transaction is confirmed.

There is still a hosting fee, but it is paid by the users. Every transaction has an associated fee
known as “gas”. The cost for this gas may be insignificant, as is the case with Nebulas, where
you can play 100 full games for less than a penny (at current prices).

Sequence of Events
Each of the following steps are smart contract methods.

1) Start or Join Game
After laying out their board for a game, a transaction is created to kick things off. If there
is no game pending, this creates one; if there is a game pending, this will join that game.

This request includes a hash code for each tile on the board (10x10 or 100 hash codes).

2) Make Move

The first move of the game is the simplest. Who goes first is randomly selected by the
smart contract when the game begins. To make a move, the player simply states which
tile they are targeting (e.g. “B6”).

3) Reveal Tile and Make Move
Every move after the first must also reveal if their opponent hit or missed. This is done
by sharing the salt used to create the hash code for the tile being revealed.

If your opponent hit and that hit sunk a ship, that sink must also be revealed with your
next move.

The information for the reveal(s) is sent with a “Make Move” request.

6/19

Battleships On The Blockchain
by Hardly Difficult

4) Game Over I Lost

When the game is over, the loser is going to know this first as the final hit has not yet
been revealed. Once your last ship has been sunk, or if you think you are going to lose
but don’t want to take a beating, you create a transaction conceding the game.

It’s not over yet. You may think you lost, but if your opponent was cheating, we’ll discover
that next.

5) Confirm Winner

Once a player has conceded, the potential winner must prove that they were not cheating
in order to redeem their prize. This is done by revealing their entire board. The smart
contract confirms it was a valid layout and any hits or sunk ships during game play were
revealed at the correct times.

Once the winner has been confirmed, tokens are awarded. If the “winner” was actually
cheating, they will be unable to confirm and the other player can collect a prize after a
timeout period has passed.

Alternative Methods:
● Redeem Win From Timeout: ​After a brief timeout period has passed, you can redeem a

win and prize by revealing your board (using the same technique as explained by
“Confirm Winner” above), proving that you were not cheating during the game.

● Cancel Game Which Has Not Started:​ If you have a game pending, it may be canceled
until an opponent joins in.

Secret Management
“Secret Management” refers to the process for selecting the hash codes shared at the start of
the game in a way that prevents your opponent from learning your layout too soon while
allowing the smart contact to confirm the layout was not changed during gameplay.

Secret Management Requirements:
● Board layout must not be readable until the game is over. Only the content of tiles which

have been targeted are known.
● Moving a ship after the game begins results in a loss.
● Not declaring that a shot has hit or sunk one of your ships results in a loss.
● Pretending a hit was a miss or that the wrong ship was sunk results in a loss.

7/19

Battleships On The Blockchain
by Hardly Difficult

Secret Management Process:
The board layout is stored at the start of a game as a SHA-256 hash code per tile (referred to as
the ​tile_hash​). Each ​tile_hash​ is a hash code of the following data points concatenated:

● tile_salt​: A SHA-256 hash code of the following points concatenated:
○ A secret word phrase that is randomly selected or entered by the player before

the game begins.
○ The tile’s position.

● has_ship​: Binary variable representing whether a ship occupies that tile or not.

After the opponent has taken a shot, the tile is revealed. This is done by sharing the ​tile_salt
and ​has_ship​.

● Once the ​tile_salt​ is known, we are able to confirm that ​has_ship​ was not changed.
This is because with SHA-256, a small change to the source data results in a large
change to the hash code. It’s effectively impossible to find a ​tile_salt​ which would
allow you to change the ​has_ship​ value without also changing the resulting
tile_hash​ value.

If the opponent's shot sinks a ship, the ship is revealed. This is done by sharing the name and
position of the ship.

● All ship reveals are stored. If a sunk ship is not revealed right after it was sunk, we will
detect this when tiles are later revealed at the end of a game (if not sooner).

In order to claim a win, your entire board must be revealed. This allows the smart contract to
confirm that you were not cheating by validating the contents of each tile, confirming that the
original board layout was valid, and verifying that any ships sunk during the game were revealed
at the correct time.

This solution could be implemented strictly peer-to-peer, but peer-to-peer raises a few issues:
sharing your IP address with your opponent, connecting behind firewalls, and enforcing timeout
scenarios. This makes strictly peer-to-peer games undesirable.

Front End
We implemented the front-end using Javascript, HTML, and CSS, leveraging Bootstrap 4 and
jQuery. The app interfaces with Nebulas via ​NebPay​ and the ​Nebulas Web Extension Wallet​. It’s
a pretty simple front-end, polling for status changes and providing an interface for the game.

8/19

https://github.com/nebulasio/nebPay
https://chrome.google.com/webstore/detail/nasextwallet/gehjkhmhclgnkkhpfamakecfgakkfkco

Battleships On The Blockchain
by Hardly Difficult

The front-end retrieves information from the blockchain via a Nebulas REST server. This server
is a free service offered by the Nebulas organization to make creating dapps easy. Anyone
could stand up a similar service. This does introduce centralization and a single point of failure
for the game; however, it’s not a critical component. The front-end could allow the user to select
a different server should the Nebulas server go down or if the user does not trust the Nebulas
organization.

Shipcoins
Instead of filling out a form for an airdrop or redeeming tokens from a faucet, players earn
Shipcoins for playing the game - whether they win or lose. Then you play again. And again. And
so on until all of the Shipcoins are distributed.

These are limited edition NEP5 tokens which will be tradable on a Nebulas DEX , once one is 1

created. The winner of the first game gets 42 Shipcoins. With every win, the jackpot grows by
0.1%. Losers get 1% of the payout as well as a thanks for playing. The only real losers are people
who rage quit - if you timeout or simply walk away, you get nothing.

Threat Model
This section reviews various ways someone may try to break the game.

Moving a ship after the game begins
Attack​: A common cheat used while playing the board game version of Battleships, a player
simply moves their ships a little and declares a “miss” instead of admitting it was a “hit”.

Mitigation:​ At the start of the game, a hash for every tile is provided. If a player attempts to
move a ship to cheat like this, they would then need to reveal a tile as a “miss” when that tile’s
hash was originally created with a “hit”. The resulting hash won’t match and the move will not be
accepted. The player can either try again, making an honest move, or timeout and lose the
game.

Missing ship(s) from the board
Attack:​ A player may choose to simply not include all 5 ships when declaring their layout at the
start of the game. Their opponent will struggle to find all the ships and may believe they lost.

Mitigation: ​When the game ends, the winner must reveal their entire board. When this occurs,
we require exactly five ships. If one is missing, the reveal will be rejected and that player will

1 Note that there is no use case for Shipcoins, I would be shocked if anyone placed a buy order. But yes,
technically, it ​could ​happen.

9/19

Battleships On The Blockchain
by Hardly Difficult

timeout. This allows the honest player, who appeared to have lost, to collect the win for playing
fairly.

Too many ships on the board
Attack: ​A player may choose to play too many ships on the board, hoping to confuse their
opponent.

Mitigation:​ Players will not be able to successfully reveal more than 5 ships; therefore, a player
utilizing this strategy would not be able to win a game.

Invalid ship size
Attack:​ A player may try placing a ship which is too small (or too large).

Mitigation: ​Players will not be able to reveal a ship which is not a valid size and therefore cannot
win a game this way.

Spying on the opponent
Attack: ​A player may use the blockchain’s block explorer in order to try and discover their
opponent’s board layout.

Mitigation: ​The blockchain is only aware of hash codes until tiles are revealed, which does not
occur until the game ends and the content of the tiles is revealed to both players. It is not
feasible to learn anything from the hash code alone.

Taking two shots instead of one
Attack: ​A player may send multiple transactions, hoping to get multiple shots in before their
opponent’s turn.

Mitigation: ​The blockchain is sequential, so in this scenario one of the moves came first. The
smart contract accepts that move and rejects the rest.

Declaring a “hit” was a “miss” or vice-versa
Attack: ​A player pretends a hit was actually a miss or vice-versa in order to mislead their
opponent.

10/19

Battleships On The Blockchain
by Hardly Difficult

Mitigation: ​The reveal for that tile will fail. The player must re-submit, revealing that it was a hit,
or timeout and lose the game.

Not declaring a sunk ship, or declaring it sunk too soon
Attack:​ A player honestly reveals a hit, but does not reveal that the hit sunk the ship. Or, they
reveal that it was “sunk” by pretending the ship is smaller than it actually is.

Mitigation:​ The dishonest player here can never win after this occurs, as they will be unable to
successfully reveal the board. When they try, the smart contract will see the undeclared or
incorrectly declared sunk ship.

Timeout
Attack:​ A player takes too long, the browser crashes, or they rage quit, leaving the other player
hanging.

Mitigation:​ Each turn gives the player 45 seconds to make a move. After this time has passed,
the other player may redeem the win and a prize by simply proving they were not cheating
during the game.

Not conceding a lost game
Attack:​ In order to drag out the game, the opponent never concedes and continues to make
shots (so that a timeout does not apply).

Mitigation: ​By doing so, the honest player will eventually have all of their boats sunk. Once this
occurs, they concede. However, the cheater will be unable to reveal, forcing them into a timeout.
Therefore, the honest player will be able to collect the win.

Invalid moves
Attack: ​A player attempts an invalid move, such as out-of-bounds or targeting a cell which has
already been targeted.

Mitigation: ​The smart contract knows the rules of the game and simply will not accept invalid
actions. If they try, the transaction will fail and the player can submit a different move.

11/19

Battleships On The Blockchain
by Hardly Difficult

Break it once and that attack can be reused
Attack: ​Brute force SHA-256 to find a secret which allows for changing data after the start of the
game. If discovered, the same data could be used game after game.

Mitigation: ​This is practically impossible. To improve security, we could add the ​game_id​ to the
hash creation. However, we don’t do this as it adds one more transaction to the flow, slowing an
already slow game.

Playing yourself
Attack:​ ​Someone creates multiple accounts, opens a second browser, and plays themself over
and over to farm tokens.

Mitigation: ​We could limit how many times each account may play, or consider the move count
to help detect when people are not really playing. Alternatively, a small fee to play the game
could help discourage this.

Issues & Possible Improvements
There are some issues that this implementation still faces.

Gameplay Speed
Issue:​ Each move is a separate transaction to increase game integrity and eliminate the
possibility of cheating. In a game that may take over 100 moves to complete, at an average
transaction speed of 10 - 15 seconds, this can be a lengthy process.

Improvement:​ Deploy to a faster blockchain. There are several sidechain solutions in the works
which promise to offer very high performance at a low cost, ultimately secured by a reputable
main chain. ​ZombieChain​ is one such sidechain in the works for Ethereum targeting gaming use
cases.

User Expense
Issue​:​ In our implementation, users only pay for gas and are rewarded with tokens. Even though
it’s very cheap to play a game, it’s not entirely free. There is a cognitive load associated with
approving transactions and considering the cost of gas, and it’s a turnoff for users. Having to
pay anything will significantly reduce the number of players who try the game.

12/19

https://medium.com/loom-network/announcing-zombiechain-an-eos-like-dpos-sidechain-for-ethereum-dapps-e0eba6c244da

Battleships On The Blockchain
by Hardly Difficult

Improvement: ​An alternative blockchain which pushes the costs back to the developers, such as
EOS​, may make the experience more attractive for players.

Tedious
Issue:​ Each move is a transaction, and each transaction must be approved by the user
manually. This is the design used by the wallet extension and is generally important to
maintaining the user’s security: The user can trust one wallet extension instead of having to
trust each individual dapp they interface with.

Improvement:​ If the game became successful or we were otherwise a reputable brand, users
might be willing to trust our game. If we are trusted, users can share their keys with the app (like
they do with the wallet extension today). Then transactions could be processed automatically
without prompting for confirmation with each action.

Gameplay Experience
In order to simplify development, some commonly expected features were not included. These
features were excluded for dev-time considerations, but should be possible to add on.

● Matchmaking​.​ Something more interesting than simply matching one person to the very
next one who plays.

● Reveal Experience.​ For an improved play experience, the reveal action could be made

right away. Then the player considers their next move and takes a shot. Implementing
this would require another transaction in the process, and may make the game even
longer.

● Challenging.​ If you strongly suspect your opponent is cheating, there should be an

option to challenge them. Once a challenge has occurred, the game is over. If your
opponent was not cheating they win; otherwise, the win goes to the challenger.

Other Technical Considerations
Considerations which could be addressed but have been excluded from this implementation for
simplicity:

● Chain reversals or orphan blocks may occur. ​This is a normal part of the consensus
process for blockchains. The impact to dapps is data may appear and then a few
seconds later disappear. The smart contract will roll with this gracefully, but the
front-end would need some additional capabilities to handle this smoothly.

13/19

https://eos.io/

Battleships On The Blockchain
by Hardly Difficult

● Clock drift.​ ​Time is difficult for networks. During consensus, different entities will be
producing blocks, and their clock may not align perfectly with others. Currently, the game
uses time for the timeout feature, and with the current implementation it is possible for
the countdown to go up and down (e.g. T-5, 4, 5, 3, 1, etc.).

● Sniping.​ A player can watch the mempool for pending transactions, attempt to glean

some information from it, and then post a transaction with a higher gas price so it
makes it into the chain before the original transaction. For example: I allow a timeout to
occur and then my opponent submits a transaction to claim the win. That transaction
includes their entire board. If I see this in the mempool and then quickly make a move
that’s accepted into a block first… well, then it’s easy to win. This could be mitigated by
adding another step to the timeout process.

● Merkle Tree​.​ Revealing the board is an expensive transaction. Using a Merkle Tree could

simplify that final, full board reveal.

14/19

Battleships On The Blockchain
by Hardly Difficult

Other Possible Applications
The main capability that Battleships On The Blockchain demonstrates is the ability to establish
player selections or other secret information which can be broadcast to a public blockchain,
preventing players from cheating while ensuring that no-one can spy on that information
prematurely. Throughout a game, select pieces of information may be verifiably revealed, and at
the end of the game we can complete a final check confirming that there was no cheating along
the way.

There are several types of games which could be implemented using these techniques. We
discuss some simple examples below.

Example: Rock Paper Scissors
The challenge with Rock Paper Scissors is ensuring that neither player could possibly know the
other’s selection before making their choice. Using the techniques outlined above, we could
implement this in a provably fair way as follows:

1) Bob selects “Paper,” hashes it along with a salt, and publishes the hash to the
blockchain.

- Jane has not yet made a selection for Bob to try and spy on.

2) Jane selects “Rock” and publishes that to the blockchain.
- Jane can see Bob’s hash, but has no idea which selection it represents.

3) Bob submits his selection and the salt used to create the hash, proving its validity.

- By using hash codes, Bob is not able to change his selection after seeing Jane’s.
The worst he could do is rage quit.

Example: Hearthstone ®
For a game like Hearthstone ® or Magic: The Gathering ®, we need to prevent the other player
from knowing which cards are in your deck, and we need a way to shuffle the cards fairly. We
could do this as follows:

1) Each player privately prepares the following:
a. cardid_to_card:​ ​A list of the cards in their deck so they may be referenced by

cardid​.
b. orderid_to_cardid:​ ​A list representing a random order of ​cardid​ which

defines the shuffle order for their opponent.

15/19

Battleships On The Blockchain
by Hardly Difficult

2) Each player publishes the hash codes of their selections for the ​cardid_to_card​ and
orderid_to_cardid​ lists to the blockchain so we can prove integrity later on.

a. Hash codes must include some salt information which can later be revealed.

3) To draw a card:
a. Jane reveals the next (or first) ​cardid​ from the ​orderid_to_cardid​ list she

has published.
i. This is done by sending both the ​cardid​ and the salt used to create the

hash in the ​orderid_to_cardid​ list.
b. Bob looks up the card from his private ​cardid_to_card​ list.

4) To play a card:

a. Bob reveals the card by sending both the card and the salt used to create its hash
in the ​cardid_to_card​ list.

In order to fairly select cards from a shuffled deck, your opponent is effectively selecting a
specific order of cards without knowing what the cards are, just as though they were selecting
cards from a face-down pile. After this is complete, we can fairly draw cards, keeping the
information known to just one player until they are ready to play it.

You could even run with these concepts to reveal only a specific attribute from a set of
attributes. In Hearthstone ® , for example, I draw a card with an on-draw effect that does
something. My opponent needs to know about the attribute so we can process the on-draw
effect, but I do not want them to know which card it is yet. Using the techniques above, another
list of hash codes representing ​cardid_to_attribute​ could be created in order to verifiably
reveal only specific attributes as appropriate.

16/19

Battleships On The Blockchain
by Hardly Difficult

Conclusion
Our goal is to help people understand how dapps work a little better and to get you thinking
about new possible applications.

Let’s be honest: the play experience here is not ideal. A few of the suggestions above could help,
but unless the game has something real at stake players will not want to sacrifice the benefits
of the typical centralized server solution - namely, a free and fast expeniece.

In the future, blockchain performance will improve, and the experience could get closer and
closer to what players expect today while adding in benefits blockchains provide, such as the
ability to create provably fair games.

Thanks for taking the time to read this paper. Please do give the game a shot as well. And if you
start to create a game of your own, let us know.

17/19

Battleships On The Blockchain
by Hardly Difficult

Appendices

Disclaimer
You may want to consult a lawyer before launching your own dapp, particularly if gambling or
other regulated activities may be involved.

Note that every transaction is a taxable event in some countries.

Definitions

Term Technical Definition

Blockchain A ​distributed network ​which reaches consensus on an absolute
ordering of events or transactions. This game was implemented
using the Nebulas Blockchain specifically, but the techniques
used would work on any blockchain with ​Smart Contract ​support.

Dapp Short for “decentralized application,” a dapp runs back-end logic
on a peer-to-peer network in place of a traditional centralized
server.

Decentralized Network A distributed network is decentralized if it does not depend
heavily on a specific company or entity.

Distributed Network A network is distributed if there is no single point of failure. This
is often achieved with a mesh network of connected peers.

Hash code A hash code is the result from executing a ​hash function​.
Hashing is the process of taking an arbitrary amount of
information and creating a fixed amount of information
representing it, the hash code. A small change to the source
data results in a large change to the hash code.

Immutable Content Content which cannot be lost, corrupted, or modified once it has
been established.

NEP5 The Nebulas standard for offering tradable tokens. These tokens
will be easily managed by Nebulas wallets and tradable on an
Nebulas exchange.

18/19

https://en.wikipedia.org/wiki/Hash_function

Battleships On The Blockchain
by Hardly Difficult

Merkle Tree Merkle trees are a way of representing a large amount of
information with a tree of hash codes such that a subset of the
real data can be verified without considering all the data.

Salt A ​salt is arbitrary information used as an additional input for a
hash function to defend against ​dictionary attacks​.

SHA-256 A specific implementation of a hash function. This is the one we
used, but there are many other valid options to consider.

Smart Contract Program logic / code which is hosted on and executed by a
blockchain network.

19/19

https://en.wikipedia.org/wiki/Salt_(cryptography)
https://en.wikipedia.org/wiki/Dictionary_attack

